Basic Modelling with AgenaRisk

www.agenarisk.com

Copyright Agena Limited - © All rights reserved
Copyright Notice

© 2013 Agena Ltd. No part of this publication may be reproduced, published, stored in an electronic database, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, for any purpose, without the prior written permission of Agena Ltd.

THERE IS NO WARRANTY OF ANY KIND FOR THE ACCURACY OR USEFULNESS OF THIS INFORMATION EXCEPT AS REQUIRED BY APPLICABLE LAW OR EXPRESSLY AGREED IN WRITING.
1. Introducing the Car Costs Model

This tutorial takes you through the process of building a realistic predictive model using AgenaRisk. In the process of building this model, you will be introduced to some of the more advanced and powerful features that AgenaRisk has to offer, such as ranked nodes, simulation nodes, partitioned expressions, and continuous graphs. You will also gain modelling experience that you can later apply to your own problems.

Before working through this tutorial you should read the tutorial “Getting Started with AgenaRisk” to ensure that you understand how to use the common features of AgenaRisk.

Assume you want to predict the running costs of a new car. You have short-listed three different makes of car: Mercedes, Honda and Ford. You want to find out which of these is going to be cheapest to run over time.

The important variables under consideration are:

- *Car type* (small, medium or large)
- *Reliability* (which impacts on maintenance cost)
- *Fuel economy* (miles per gallon)
- *Fuel price*
- *Annual mileage*
2. Building the Car Costs Model

2.1 Creating Ranked Nodes

1. Start AgenaRisk and create a new model by selecting Create New Model from either the opening dialog or the File menu. Alternatively, you can click on the new model icon on the toolbar:

2. If it is not already selected, toggle the auto-calculate button on the toolbar:

3. Ensure that the Risk Explorer is expanded and that the item called New Risk Object is selected. There will be only one Risk Object in this model. Notice that the Risk Object is flagged with a red icon:

You will see this icon in various parts of the AgenaRisk interface. It means that a calculation must be run on the Risk Object in question in order to make it consistent.

4. Right-click on the New Risk Object item and select Rename. In the dialog that appears, type Car Costs and click OK.

5. Create a new node in the top left corner of the Risk Map. Change its name to Car Type, change its type to Ranked, change its unique identifier to car_type and then click Apply. Your dialog should look like the one shown in Figure 1 below:
Changing the unique identifier to something short yet meaningful is important because, later on, this node will be used in expressions.

6. Click on the Node States Tab. In the Type field in the middle of the dialog, choose Low -> High (3). Then, in the States text box, replace the values Low, Medium and High with Small, Medium and Large.

7. Click Apply and then click on the Appearance tab.

8. Select the rounded rectangle at the top of the dialog, change the background colour to dark blue and click Apply. (The colour scheme is arbitrary but, in this model, we are going to use dark blue for nodes where the user has to make a choice, medium blue for nodes relating to cost and light blue for nodes containing assumptions. Colour coding nodes can make models more user-friendly.)

9. Click on the Text Format tab.

10. Change the font size to 12, change the text colour to white and then click OK.

11. Your node should now look like this, with a red exclamation mark showing that the node needs to be edited:

Figure 2 Car Type node after editing
Modelling with AgenaRisk

12. Copy the *Car Type* node and paste the copy to the right of *Car Type* on the Risk Map.

13. Change the properties as follows:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Reliability</td>
</tr>
<tr>
<td>States</td>
<td>High -> Low (3) (leave the states as High, Medium and Low)</td>
</tr>
<tr>
<td>Background Colour</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Text Colour</td>
<td>Black</td>
</tr>
</tbody>
</table>

Table 1 Properties for *Reliability* node

14. Your two nodes should now look like this:

![Risk Map after adding Reliability node](image)

15. Copy the *Reliability* node and paste it on to the Risk Map beneath the two existing nodes and change the properties as follows:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Maintainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Maintainability</td>
</tr>
<tr>
<td>Background Colour</td>
<td>Medium Blue</td>
</tr>
</tbody>
</table>

Table 2 Properties for *Maintainability* node

16. Draw edges from *Car Type* to *Maintainability* and from *Reliability* to *Maintainability*. This captures the information that *Maintainability* is influenced by both *Car Type* and *Reliability*.

17. Your Risk Map should now look like the one shown in Figure 4 below.
2.2 Using Weighted Expressions

1. Currently, the model shows the causal relationships between the three nodes, Car Type, Reliability and Maintainability, but for these relationships to be of any use you need to define the Node Probability Table (NPT) of the Maintainability node.

2. Right-click on the Maintainability node, bring up the properties dialog and click on the Node Probability Table tab.

3. Rather than defining the NPT manually, we are going to make life simpler and use an expression that will, behind the scenes, generate the NPT automatically. In the NPT Editing Mode drop-down box, select the value Expression. The expression editor will appear in the dialog as shown in Figure 5.

4. Click on the Expression Type drop-down box and observe that only two types of expression are available for ranked nodes: TNormal and Arithmetic. We will deal with Arithmetic expressions later. For now, leave the type set to TNormal.
5. **TNormal** is short for “Truncated Normal”. This is a Normal distribution where the two ends are cut off or truncated. When the TNormal distribution is used with Ranked nodes, it is always truncated using the values 0 and 1. This is because Ranked nodes are all mapped on to an underlying scale of 0 – 1.

6. You are now going to create a weighted expression that defines the parameters of the TNormal distribution. This weighted expression will reflect the relative strength of influence that the two nodes, *Car Type* and *Reliability*, have on *Maintainability*.

7. Right-click anywhere in the **Mean** text box and choose **Insert weight expression → WeightedMean**.

8. You will see a dialog like the one shown in Figure 6.

![Figure 6 Dialog for eliciting weighted expression](image)

Figure 6 Dialog for eliciting weighted expression

9. This dialog allows you to select which parents you want to include in the weighted expression and what weighting you want to give them. The slider bar at the top lets you specify how much certainty you have about this weighting. Complete the dialog so that it looks like the one in Figure 7. In this case, the expression says that when defining the maintainability of a car, we are moderately certain that car type is twice as important as reliability.

![Figure 7 Weighted expression dialog for Maintainability node](image)

Figure 7 Weighted expression dialog for *Maintainability* node

10. Click **OK**. The expression editor should now look like Figure 8:
11. You can see that the level of certainty you specified using the slider bar in the weighted expression dialog is used as the variance for the TNormal distribution. The mean of the TNormal is a formula based upon your choice of parent nodes and their weights. Note that the unique identifiers of the parent nodes are used in the formula rather than their names. If you want to edit this expression in future (e.g. if you want to change the weights or variance), you can right-click on the Mean text box and select **Insert weight expression → WeightedMean**. The existing values will appear in the weighted expression dialog and you can modify them. However, you may find it quicker to edit the variance and mean text boxes by hand.

12. Click on **Apply**. This generates the underlying NPT.

13. You can inspect the NPT that has been created by selecting the value **Manual** in the NPT Editing Mode drop-down box. Scroll around the table and look at the values in each of the cells. When you are finished, set the value of the NPT Editing Mode drop-down box to **Expression**.

14. Click **OK**.

15. Now you can test this model fragment. Click on the calculate button on the toolbar:

16. Notice that the red icon has now disappeared from the Risk Object in the Risk Explorer and the exclamation mark has also disappeared from the nodes themselves. This means that a calculation has been executed and that the model is in a consistent, correct state.
17. Double-click on all three nodes on the Risk Map so that their Risk Graphs appear. Resize the nodes so that you can see the graphs in their entirety. Your Risk Map should like the one in Figure 9.

![Risk Map Diagram]

Figure 9 Car Type, Reliability and Maintainability after calculation

18. The Maintainability Risk Graph tells us that, when we know nothing at all about Reliability or Car Type, it is most likely that Maintainability will be **Medium**.

19. Try entering different observations for both Car Type and Reliability and notice how the probability distribution of Maintainability changes. Verify, in particular, that when Car Type is **Small** and Reliability is **Low**, Maintainability is skewed towards **High**. This illustrates the increased weighting you gave to Car Type.

20. You should also look at the effects of so-called “back propagation”. Clear any observation you may have entered on Car Type or Reliability and enter the observation **High** for Maintainability. Note that the other two distributions both change – Car Type moves towards **Small** and Reliability moves towards **High** – but Car Type is more skewed. In other words, if all we know about a car is that its Maintainability is high, then the most likely explanation is that the car is small.

21. Now enter the observation **Large** for Car Type. The distribution for Reliability changes dramatically; we are now almost certain the Reliability must be high.

22. Before continuing, select **Tools → Clear Entered Data → All** and click OK in the confirmation dialog.

23. Now save your model.

2.3 Using Partitioned Expressions

1. Create a new simulation node beneath Car Type on the Risk Map. Move the existing nodes to create space as required.

 A simulation node can be created by clicking on the button shown below on the toolbar.

 ![Create Simulation Node]

 Press OK in the dialog informing you about simulation node defaults. By making the node
Modelling with AgenaRisk

a simulation node, you are telling AgenaRisk to dynamically calculate the optimum set of states that the node should have.

2. Draw an edge from Car Type to the node you just created.

3. Bring up the properties dialog for the new node. Change the name to Miles per Gallon, change the unique identifier to mpg and click Apply.

4. In the Appearance tab, change the background colour of the node to light blue and change its shape to being a rounded rectangle.

5. Click Apply.

6. Now click the Node Probability Table tab on the left of the dialog. This initially displays the Normal expression that was automatically created when created this simulation node.

7. In the NPT Editing Mode drop-down box, select Partitioned Expression. Partitioned expressions are very powerful. They allow us to generate an NPT using a different expression for each combination of parent states. The dialog looks like Figure 10. In this case we can specify a different distribution of miles per gallon for a small car, for a medium car and for a large car. This accurately reflects the real world; one distribution for miles per gallon wouldn’t be sufficient to capture these differences.

Figure 10 Partitioned expression for miles per gallon

8. Select Car Type in the left-hand list and click the Add > button to move it to the right-hand list. This is how we indicate that we want to supply different expressions for each state of the parent node Car Type. Notice that there are now three cells in the table below the two lists, one for each state of Car Type.

9. Double-click on the first cell. An expression entry dialog appears. In the Expression Type field, select TNormal. Fill out the parameters so that the dialog looks like that shown in Figure 11.
10. Click OK. Notice that the TNormal expression now appears in the first cell in the table.

11. Complete the other two cells in the same way with TNormal expressions. For both expressions, specify the **Lower Bound** to be 5 and the **Upper Bound** to be 100. For the expression in the **Medium** cell, specify 28 as the **Mean** and 50 as the **Variance**. For the expression in the **Large** cell, specify 18 as the **Mean** and 30 as the **Variance**. This partitioned expression now represents our view that larger cars are less fuel-efficient than smaller cars.

The quickest way of completing multiple cells with a very similar formula is to use copy and paste. Right-click on a completed cell and select **Copy**, then right-click into all the other cells and click **Paste**. Each cell is now identical. Then double-click on each cell to modify it.

12. Click OK.

13. Clear all evidence in the model and then run a calculation by clicking the calculate button on the toolbar.

14. Double-click on the **Miles per Gallon** node. Recall that you only specified one state for this node. You can now see how simulation has created a number of states automatically. Make the node larger so you can see all the states.

15. Hold your mouse over some of the bars on the graph and notice the information that is available.

16. This information is also available on the Risk Graph Panel. Look at the window on the Risk Graph Panel marked **Miles per Gallon**. Click on the **Expand State List** hyperlink. You will now see a full list of the states and probabilities that exist on this node. (You will need to scroll down to see all of them.)

If you are displaying Risk Graphs on the Risk Graph Panel rather than on the Risk Map, you can still access the information summary by dragging the
2.4 Customising Risk Graphs

1. Right-click on the Miles per Gallon node and select Properties from the pop-up menu.

2. Select Graph Defaults from the left side tab.

3. Click on Graph Type for large data set drop-down box, select Line.

4. Uncheck Treat Min/Max X as percentiles checkbox and clear the Min X and Max X boxes.

5. Click OK on both dialogs.

6. The Risk Graph properties system is complex but powerful. It works hierarchically. You specify a set of defaults at the node level. These will apply in all cases except for those scenarios in which you choose to override them. Then, for a given scenario, you can change the way its Risk Graph is plotted by selecting the Scenario Properties tab in Properties for a node.

7. Now let's assume that you want the Miles per Gallon node (and only this node) to have its mean shown whenever its Risk Graph is displayed.

8. Right-click on the Miles per Gallon node, select Properties and click on the Graph Defaults tab.

9. Check the Mean box in the Summary Statistics section of the dialog. This ensures that the mean will now always be shown on the Risk Graph for this node.

10. Click OK on the properties dialog.
11. Bring up the *Miles per Gallon* Risk Graph. You can now see a vertical dotted line indicating where the mean sits in the distribution:

![Miles per Gallon Risk Graph](image)

Figure 13 Risk Graph for Miles per Gallon node showing mean

The mean will be displayed every time you reopen the Risk Graph on this node but the mean will not be displayed for any other nodes.

12. Enter different values for *Car Type* and notice how the *Miles per Gallon* Risk Graph changes.

13. Clear all observations and save the model.

14. If you have time, try modifying the other Risk Graph properties and experiment with the hierarchical property system. Consult the user manual for more information about any properties that you don’t understand.

2.5 Adding Constants

1. Add a simulation node to the Risk Map beneath *Miles per Gallon* and bring up its properties dialog.

2. Modify the following properties:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Fuel price $ (gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>fuel_price</td>
</tr>
<tr>
<td>Shape</td>
<td>Rounded Rectangle</td>
</tr>
<tr>
<td>Background Colour</td>
<td>Light Blue</td>
</tr>
</tbody>
</table>

Table 3 Properties for Fuel price \$ (gallon) node
3. Give the node one state with a lower bound of 0.5 and an upper bound of 10.

4. Click on the **Node Constants** tab. Constants are numbers to which you can assign names so that they can subsequently be used in expressions. The power of constants is that their values can be modified later on via the Risk Table without needing to edit the expressions in which they are involved.

5. Click on the insert button:

6. Type `fuel_price_const` in the Constant Name field and type 3 in the Default Value field.

7. Click **Apply**.

8. Click on the **Node Probability Table** tab and then, in the **Expression Type** drop-down box, select **Arithmetic**.

9. Delete the 0.0 value in the Arithmetic Expression text box.

10. Right-click on the Arithmetic Expression text box, select **Insert constant → fuel_price_const** and click **OK**.

11. You have now made *Fuel price $ (gallon)* a constant node. This is because the node is a simulation node and its NPT is generated from the value of the `fuel_price_const` constant. This means that, after calculation, *Fuel price $ (gallon)* will have a single value. This value will either be the default (3) or whatever is specified in the corresponding Risk Table entry.

12. Before the value of the `fuel_price_const` constant can be modified, an entry needs to be added to the Risk Table. Click on the Risk Table tab, right-click on the *Fuel price $ (gallon)* entry and select **Properties**.

13. In the **Connection Type** drop-down box, select **Constant** and then click **OK**. The value of `fuel_price Const` can now be changed by editing the contents of this entry’s text box.

14. Return to the Risk Map, copy the *Fuel price $ (gallon)* node, paste it and move the copy below the original.

15. Open the properties dialog for the newly pasted node, change its name to *Miles per Year* and change its unique identifier to `mpy`.

16. Click on **Apply**.

17. Click on the **Node States** tab. Check the **Make upper bound positive infinity** box. There are now two states. Change the lower bound of the first state to 0. Change the lower bound of the second state to 1. The two states should now be 0 – 1 and 1 – Inf.

18. Click on **Apply**.

19. Click on the **Node Constants** tab, change the value of the **Constant Name** field to `miles_per_year_const` and change the **Default Value** to 10000.

20. Click on **Apply** and then, in the **Node Probability Table** tab, verify that the expression now contains the modified constant name, `miles_per_year_const`. In order to refresh the underlying node probability table, click on the red hyperlinked message (if it appears).
21. Click OK.

22. Look in the Risk Table and notice that a new entry has been created for miles_per_year_const:

<table>
<thead>
<tr>
<th>Car Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Car Type</td>
<td></td>
</tr>
<tr>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>Maintainability</td>
<td></td>
</tr>
<tr>
<td>Miles per Gallon</td>
<td></td>
</tr>
<tr>
<td>fuel_price_const</td>
<td></td>
</tr>
<tr>
<td>miles_per_year_const</td>
<td></td>
</tr>
</tbody>
</table>

Figure 14 Risk Table showing entries for constants

23. Save your model.

2.6 Using Arithmetic Expressions

1. Copy the Fuel price $ (gallon) node, paste the copy and place it to the right of the original.

2. Draw edges from Fuel price $ (gallon) and Miles per Gallon to this node.

3. Open the properties dialog for the copy, change its name to Price per Mile ($) and change its unique identifier to ppm. Click Apply.

4. Click on the Node States tab. Change the lower bound of the single state to 0.

5. Click on Apply. If another dialog appears then click OK on it (this is a benign error message that occurs because we haven’t yet updated the node probability table for this node).

6. Click on the Node Constants tab. Right-click on the constant and choose Delete Selected. You don’t need any constants defined on this node.

7. Click on the Node Probability Table tab. The expression used for generating the NPT of Price per Mile ($) is going to be a simple division of Fuel price $ (gallon) by Miles per Gallon (don’t worry about dividing by zero – AgenaRisk handles this internally).

8. Clear the Arithmetic Expression text box and then right-click inside it. Select Insert parent → Fuel price $ (gallon) (fuel_price). Then type the division symbol: / . Finally, select Insert parent → Miles per Gallon (mpg).

9. Click on the Graph Defaults tab. Click on the Graph type for large data set drop down box and select Line. Uncheck Treat Min/Max X as percentiles checkbox and clear the Min X and Max X boxes.

10. Click OK.

11. Run a calculation.

12. Double-click on the Price per Mile ($) node to bring up its Risk Graph and resize it so that you can see it all. The graph should look like the one shown in Figure 15.
13. There is a very long tail on this distribution that isn't of interest. You can modify the Risk Graph properties for just this node so that the tail isn't displayed. This allows you to focus more clearly on the main area of the distribution.

14. Bring up the properties for the Price per Mile ($) node. Select the Graph Defaults tab.

15. Mark the checkbox next to Treat Min/Max X as percentiles.

16. Type 0.1 in the Lower percentile X Bound box and type 98 in the Upper percentile X Bound box. This configures the graph so that the first 0.1% and the last 2% of probability mass are not shown.

17. You should see a graph that looks like the one in Figure 16 below.

18. If you have time, enter different values of Car Type and observe the effects on Price per Mile ($). Before continuing, clear all observations.
19. Create a new simulation node below and to the right of Price per Mile ($). Draw edges from Price per Mile ($) and Miles per Year to this new node.

20. Open the properties dialog for the new node and supply the following property values using the techniques you have previously learned:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Annual Fuel Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Afc</td>
</tr>
<tr>
<td>Node States</td>
<td>0 – 10, 10 – inf</td>
</tr>
<tr>
<td>NPT (Expression)</td>
<td>Arithmetic = Price per Mile (ppm) * Miles per Year (mpy)</td>
</tr>
<tr>
<td>Shape</td>
<td>Rounded Rectangle</td>
</tr>
<tr>
<td>Background Colour</td>
<td>Medium Blue</td>
</tr>
<tr>
<td>Lower percentile X Bound</td>
<td>1</td>
</tr>
<tr>
<td>Upper percentile X Bound</td>
<td>99</td>
</tr>
</tbody>
</table>

Table 4 Properties for Annual Fuel Cost ($) node

Specifying the states for simulation nodes should not matter because AgenaRisk automatically determines the correct ranges for nodes conditional on the evidence and the states of the parent nodes.

21. Run a calculation.

22. Double-click on Annual Fuel Cost ($) and resize the Risk Graph so you can see all of it. It should look like this:
Modelling with AgenaRisk

Figure 17 Risk Graph for Annual Fuel Cost ($)

Remember that you can get more screen space by decreasing the width of the Risk Graph panel and Risk Explorer (or by retracting them completely).

23. Your Risk Map should now look something like the one in Figure 18.

Figure 18 Partially complete Car Costs Risk Map

24. Save your model.

2.7 Completing the Model

1. There are now just two nodes left to add; then the Car Costs model will be complete and you can start using it and viewing its predictions.
2. Add a simulation node to the right of Maintainability. Make Maintainability the parent of this new node by adding an edge between them.

3. Open the properties dialog for the new node and supply the following property values:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Annual Maintenance Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Amc</td>
</tr>
<tr>
<td>Node States</td>
<td>0 – 600</td>
</tr>
<tr>
<td>Background Colour</td>
<td>Medium Blue</td>
</tr>
<tr>
<td>Shape</td>
<td>Rounded Rectangle</td>
</tr>
<tr>
<td>Lower percentile X Bound</td>
<td>1</td>
</tr>
<tr>
<td>Upper percentile X Bound</td>
<td>99</td>
</tr>
</tbody>
</table>

| Table 5 Properties for Annual Maintenance Cost ($) node |

4. The NPT is specified using a Partitioned Expression. Specify a TNormal expression for each state of the parent, Maintainability.

5. When Maintainability is **High**, use a TNormal with a mean of 100, a variance of 100, a lower bound of 0 and an upper bound of 600.

6. When Maintainability is **Medium**, use a TNormal with a mean of 200, a variance of 150, a lower bound of 0 and an upper bound of 600.

7. When Maintainability is **Low**, use a TNormal with a mean of 500, a variance of 150, a lower bound of 0 and an upper bound of 600.

8. Run a calculation.

9. Double-click on Annual Maintenance Cost ($), resize the Risk Graph and verify that it looks like the one in Figure 19.
10. Add a simulation node below Maintainability on the Risk Map. Make Annual Maintenance Cost ($) and Annual Fuel Cost ($) the parents of this new node by adding edges between them.

11. Open the properties dialog for the new node and supply the following property values:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Total Annual Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>total_annual_cost</td>
</tr>
<tr>
<td>Node States</td>
<td>0 – 10, 10 – inf</td>
</tr>
<tr>
<td>NPT (Expression)</td>
<td>Arithmetic = Annual Maintenance Cost ($) (amc) + Annual Fuel Cost ($) (afc)</td>
</tr>
<tr>
<td>Background Colour</td>
<td>Medium Blue</td>
</tr>
<tr>
<td>Shape</td>
<td>Rounded Rectangle</td>
</tr>
<tr>
<td>Lower percentile X Bound</td>
<td>0</td>
</tr>
<tr>
<td>Upper percentile X Bound</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 6 Properties for Total Annual Cost ($) node

12. Run a calculation.

13. Double-click on Total Annual Cost ($), resize the Risk Graph and verify that it looks like the one in Figure 20.
14. The model is now complete. The Risk Map should look something like this:

![Completed Risk Map of Car Costs model](image)

Figure 20 Risk Graph for Total Annual Cost ($)

15. Save your model. In the next section, you will interact with the model and use it to generate predictions about the expected running costs of your three short-listed makes of car.

16. Before proceeding to the next section you might wish to check your solution against the correct solution which can be found here: Examples / Tutorials / Car Costs.ast
3. Running the Car Costs Model

3.1 Creating and Deleting Scenarios

1. One of the most powerful features of AgenaRisk is the ability to compare different scenarios side by side. You are going to use scenarios to compare the three car makes on your short-list: Mercedes, Honda and Ford.

2. Before continuing, turn off the auto-calculate feature by toggling the auto-calculate button:

You will be adding and removing a lot of observations in this section of the tutorial and you don't want a calculation to occur automatically after each change.

3. Click on the downward arrow at the top of the screen next to Risk Scenarios:

4. This expands what is known as the Scenario Manager. Currently, the Scenario Manager contains only one Scenario as shown in Figure 22 below.

 ![Figure 22 Scenario Manager showing one scenario](image)

When a new model is created, it has just one scenario. This scenario is active, which means it is displayed in the Risk Table and that observations in this scenario are shown on the Risk Map. In addition, the scenario is displayed on Risk Graphs.

5. Click on the Scenario 1 text. You will see that it is editable. Using the Backspace key, remove the text and type Mercedes.

6. Right-click anywhere in the Scenario Manager and choose Add a New Scenario. Rename this scenario Honda.

7. Add another new scenario and name this one Ford.

8. Click on the Risk Table tab below the Scenario Manager. Notice that the column of fields is called Mercedes. This corresponds to the first scenario you added.

9. By default, only the first scenario in a model is marked as active. In order to see the other two scenarios on the Risk Table, click their Active boxes. You should now see all three scenarios:
10. Scenarios can also be deleted from the Scenario Manager. Add two new scenarios and then select both of them by holding down the Ctrl key between clicks.

11. Right-click on the scenarios and select **Delete Selected Scenario(s)**. Verify that the Scenario Manager now contains just the three scenarios created earlier.

If you have a scenario containing a lot of observations, the quickest way of creating another scenario that is only slightly different is to right-click on the scenario and select **Clone Selected Scenario(s)**. This will create a copy of the scenario that can then be renamed and modified.

3.2 Adding Observations to Scenarios

1. Observations can be added to scenarios either via the Risk Map or the Risk Table. The only exception to this is values for constants; they can only be entered via the Risk Table.

2. You will enter the constant observations first.

3. For all three makes of car, fuel price and annual mileage are going to be the same. In the row entitled **fuel_price_const** enter the value 3 in each scenario’s text box. Likewise, enter **10000** in all three boxes in the **miles_per_year_const** row. Your Risk Table should now look like this:

![Risk Table with constant values entered for three scenarios](image)

4. Now enter the **Car Type** for each scenario. Select **Large** in the drop-down box for **Mercedes**, select **Medium** for **Honda** and select **Small** for **Ford**.

5. Similarly, enter the **Reliability** for each make of car. For **Honda**, select **High** and for **Ford** select **Low**.

6. For **Mercedes**, you are going to enter soft evidence. Double-click on the **Reliability** entry to expand it. Enter **1** in the **Medium** and **Low** text boxes.
Soft evidence can only be entered on the first active scenario in the Risk Table. To enter soft evidence on any other scenario, you need to make any other scenarios temporarily inactive.

7. Your Risk Table should now look like the one in Figure 25.

```
<table>
<thead>
<tr>
<th>Car Type</th>
<th>Mercedes</th>
<th>Honda</th>
<th>Ford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>Soft Evidence</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Maintenance</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Miles per Gallon</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Annual Fuel Cost $</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>Total Annual Cost $</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

![Figure 25 Risk Table with constants, hard evidence and soft evidence](image)

8. Run a calculation.

9. When the calculation is complete, switch to the Risk Map view. Your Risk Map should look like this:

![Figure 26 Risk Map showing three scenarios](image)
10. Observe that each Risk Graph now shows all three scenarios. Look at the Total Annual Cost ($) node and compare the three makes of car. Move your mouse over the lines to view the summary information. Given the information we have entered so far, the model tells us that owning a Mercedes will have the highest annual cost (mean = $2309) followed by Honda (mean = $1346). Ford is the cheapest (mean = $1076).

11. The narrower a distribution, the more confident we are that the mean represents the “true” value of the node. Notice that the distribution for Ford is the narrowest; we can be fairly confident that the actual annual cost of owning a Ford will be close to $1076. Conversely, the Mercedes distribution shows the greatest spread; the actual annual cost of owning a Mercedes could be significantly higher or lower than $2309.

12. Look at the two nodes Car Type and Reliability. Remember that we entered observations for these nodes in the Risk Table. Each scenario is represented by a label sitting on top of the node. In the case of Reliability, notice that the label for the Mercedes scenario says Soft Evidence and that this scenario has two corresponding bars on the Risk Graph. The two bars show the information that you entered; namely, that a Mercedes could just as likely have high or medium reliability.

13. Imagine now that, having read a glowing review in a car magazine, you believe the reliability of Mercedes cars to be high. Right-click on the Reliability node and select Enter Observation → Mercedes → High.

14. Run a calculation.

15. Observe how the mean total annual cost of owning a Mercedes has decreased slightly to $2156. Despite the improved reliability, however, owning a Mercedes is still likely to cost more than owning either of the other two cars.

16. Return to the Risk Table view and try entering different values for Fuel price $ (gallon) and Miles per Year. Remember to run a calculation when you have finished making your changes. Return to the Risk Map to view the updated Risk Graphs (or expand the Risk Explorer so that you can see the graphs while you are still in the Risk Table view). Note what effects the changes have had on the Total Annual Cost ($) node.

17. Try entering different constant values for each scenario. For example, you might decide that, if you owned a Ford, you would drive it a lot more than if you owned a Honda and that, if you owned a Honda, you might drive it slightly more than you would drive a Mercedes. You would represent this information by specifying different values for miles_per_year_const (18000 for Ford, 10000 for Honda and 8000 for Mercedes, say). Under these circumstances, a Ford costs the most to run.
4. Next Steps

This tutorial has shown you step-by-step how to build a reasonably complex model using AgenaRisk. There are, however, still many ways of using the tool that have not been covered. In order to learn more about these different uses you should work through the more advanced tutorial, *Advanced Modelling with AgenaRisk*, and explore the range of well-documented example models that come with the tool.